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Note 

Improving the Convergence of Solutions to the 
Fredholm Integral Equation of the First Kind 

I. INTR~DuC~~N 

The equation, 

g(y) f E(Y) = j K(Y9 x)f,(x> d--G (IA) 

comes up frequently in the measurement of physical quantities. The precise meaning 
of this equation is 

go(Y) + 6(Y) = 1 K(Y, XV(X) dx, (1B) 

where g,(y) is the “true” unknown function, g(y) = go(y) + 6(y) is the average value 
as measured experimentally, the statistical average (6(y)) = 0, and (6*(y)) = s’(y). 
We  denote by f,(x) the solution of Eq. (1) obtained with the experimental values of 
g(y) and by &(x) the presumed “exact” unknown which would be the solution if 
6(y) = 0 everywhere. We  assume that f,(x) exists and is unique. We  attempt to use 
g(y) to obtain an approximation to f,(x). 

If the “left-iterated kernel” K, and the “right-iterated kernel” K, are 

Kdx’, x) = 1  K(Y, x’) W Y , x) dy, KR(y',y)= [K(J", x)K(,~,X)dx, (2) 

we may attempt to expand &(x) and go(y) in series of the eigenfunctions of K,, and 
K, [l-3): 

9,G’) = P,, i KL(x’, xl 4,(x> dx, t,W  =PU, f K,(Y), Y> L,(Y) dy. (3) 

The #,,(.Y) and r,(y) are orthonormal sets of functions and related by 121 

4,,(x) = PA” [ K(Y, x) C,(Y) dy. (4) 
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The two expansions are related by 

go(Y) = c &n(Y), 
” 

f,(x) = c fhw = c Pk” &w>~ 
n 

where 

s”, = .i go(Y) r”(Y) dY? f k’z = j”f,(x) Mx> dx. 

For later convenience we define 

It is well known that a useful approximationf,(x) to fO(x) is given by [2] 

xv(x) = i Pi” &4”(X), 
N=l 
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(5) 

(6A) 

(f33) 

(7) 

where g, = g”, + 6, replaces the g,” of Eq. (5), and where N is usually small. Now the 
sum in Eq. (5) must be infinite if the solutionf(x) is to be unique, but if the sum in 
Eq. (7) were extended to an infinite number of terms, it would not be likely to con- 
verge. Nonetheless, the finite sum, properly terminated, frequently gives a useful 
approximation to f(x). 

In fact, if the solution for& is to be unique, there must be many large eigenvalues 
runa If go(y) and fo(x) are smooth, g”, and f”, will generally be largest for n 
corresponding to small 1~~. However, the measured g(y) will not be smooth due to the 
experimental error, so g, will not in general be small for all small ,un; in other words, 
some g, are dominated by the error. Unfortunately, the terms that are dominated by 
the error are given the largest weight in the solution due to the factor ,uy’ in Eq. (5). 
The solution is therefore unstable unless the sum is terminated before the error 
dominates. With the characteristic-function method it is easy to see when to terminate 
the series, which is probably the major advantage of the method. 

An acceptable criterion for including or excluding terms from the sum in Eq. (7) is 
to exclude those terms for which 8, in an appreciable fraction of g,,. An estimate of 
6, must be obtained. We define 

6; = (6:) = (4 dy’(4y) &Y’)) L(Y) t,,(y’h 

where (..‘) denotes the statistical average. For many problems the correlation func- 
tion (4~) 4 Y’) > vanishes very quickly as y --y’ increases. In fact. in practice we 
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know g(y) experimentally only at a finite number of points, and the 6(y) are 
frequently essentially uncorrelated at the different points. It is therefore reasonable to 
approximate si as 

We then omit terms from Eq. (7) for which E, is an appreciable fraction of g,. In 
essence, we replace the unknown 6, by an estimate of (L5:)“‘. 

The expected random variation in f,(x) is 

4 = \ (l”f&> -f%)l’> QLx = 1 dx ( [ f Pi” bw)] ‘) 3 fl=l 
wheref$ is obtained using g”, in Eq. (7). Under the same approximations used to get 
Eq. W, 

While exploring methods of solving the problem outlined in Section III, we found 
that when K(y, x) is small for some values of x regardless of y, the approximations to 
f converge too/ slowly to be useful. The slow convergence, which causes an increased 
sensitivity to random error, is in part caused (roughly speaking) by an effort to deter- 
mine f for values of x where inadequate information is available. This situation will 
be discussed further in Section II and a method for restoring stability (reducing sen- 
sitivity to the random error) to the solution established. In Section III we show the 
improvement obtained in our original problem when the method of Section II is used. 

II. PROPERTIES OF THE STANDARD SOLUTION 

We first modify our functions in ways that will not change the form of Eq. (1) but 
will give us additional freedom in the process of solving the equation. Define 

f(x) = C(x) f(x)9 K(Y9 4 = WY9 xMC(x)l, (10) 

where C(x) is an arbitrary positive function. Equation (1) becomes 

g(Y) f E(Y) = j a.% x) f(x) ah. (11) 
Since the form of Eq. (1) is unchanged, the expansions in Eq. (5) will still have the 
same form, although the functions will naturally be changed. 

A feasible and useful procedure for choosing C(x) is to use C(x) to minimize the 
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random error A, in the first term of the expansion for f(x). Keeping only the first 
term in Eq. (9) we vary 

(12) 

subject to the conditions that r,(y) be the normalized eigenfunction of RR and that 
.I’ C’(x) dx be constant: 

.I 
K(Y, 4 K(Y’, x> - t;,(~)--~(~-t,(~‘) & 4’ h = l/k, 

(13) 

!^ f:(y) dy = 1, I C’(x) dx = 1. 

The variation is to be taken with respect to C’(x) and with respect to r, and ,B, 
(which may be treated as independent of C* only by introducing the constraints in 
Eq. (14) through Lagrange multipliers Ai). After taking the variations and under- 
taking some manipulation involving the last of Eqs. (13), we get a solution for C’(x) 
of 

C’(x) = c, 11 I‘ dy dy’ t,(y) K(Y, 4 K(Y’, xl G(Y’) I’* ---~ 
Al/PI I 

(14) 

= GP:‘* [&C,(Y) K(Y, xl. 

(We have assumed the integral to be everywhere positive. If it is not, a sign factor 
must be carried along in the following argument.) 

Equation (14) and the first of Eqs. (13) must be solved together for C and r,. 
Equation (14) may be substituted directly into the first of Eqs. (13) to get 
5,(y) = (h,/C,> i dxK(y,x)- If we apply the normalization condition for r, to this 
equation, we obtain P,, and then by substitution we get <, and C2. It is convenient to 
choose the arbitrary Ci to be Ct = j K( y, x) K( y, x’) dy dx dx’. We get ,~i = 1 and 

t,(~)=jK(y,x)dx /j& [jW ,x)dx] *( -I’*, 
C'(x) = 1 K( y, x) K( y, x’) dx’ dy. 

(15) 

Thus, in the process of determining the weight function we also determine the first 
eigenvalue and associated eigenfunction. The solution is completed by using Eqs. (3) 
and (4) to obtain the remainder of the <,, and 6, and Eqs. (5), (6), and (7) to obtain 
the expansion off: The point-to-point statistical error is given by the integrand of 
Eq. (9) (integration over dy retained). 



212 BARNHILL AND RUSS 

_ --- 

I 

\ 

\ \ 
------- 

FIG. I. Exact (model) cross section (solid curve) and solutions of the integral equation with (dashed 
curve) and without (dotdash curve) weight functions, using data with 1 % artificial error as described 
in the text. The inset is the weight function C(x). With the use of weight functions, four terms in the ex- 
pansion could be kept, as opposed to only two in the unweighted solution. 
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FIG. 2. Same as Fig. I with a different exact solution. Four terms could be kept in the weighted and 
three in the unweighted solution. 
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III. AN EXAMPLE 

To show the improvement that can be obtained by using the weight functions, we 
display the results for a rather broad kernel of explicit physical interest. The reaction 
rate R of an ion with a molecule in a drift tube containing a constant electric field E 
is given by [4 ] 

R(E) = J’-& vg(E, u) a(v) dv, (16) 
I’( 

where 

g(E, u)= g,~bw[-~(~ - ud)2/(2kTe)1 - ev-do + ~J*/PT,)l I, (17) 

and where vd = ME, T, = T,, + T,E*, and g,, M, To, T,, p, and k are constants. As 
described in Ref. [4], artificial data were generated for Eq. (16) by assuming a a(u), 
calculating the resulting rate constants, and adding a random relative error of a 
specified standard deviation. We show in Figs. 1 and 2 typical results of attempting 
to solve Eq. (16) for u by the characteristic-function method with and without the use 
of a weight function. A comparison of the two solutions shows that the improvement 
is substantial, largely because the use of weight functions permits the retention of a 
larger number of terms in the expansion. The inclusion of a weight function substan- 
tially improves the convergence of the characteristic-function method and in some 
problems is essential to the success of the method. 
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